Small Vocabulary with Saliency Matching for Video Copy Detection
نویسندگان
چکیده
The importance of copy detection has led to a substantial amount of research in recent years, among which Bag of visual Words (BoW) plays an important role due to its ability to effectively handling occlusion and some minor transformations. One crucial issue in BoW approaches is the size of vocabulary. BoW descriptors under a small vocabulary can be both robust and efficient, while keeping high recall rate compared with large vocabulary. However, the high false positives exists in small vocabulary also limits its application. To address this problem in small vocabulary, we propose a novel matching algorithm based on salient visual words selection. More specifically, the variation of visual words across a given video are represented as trajectories and those containing locally asymptotically stable points are selected as salient visual words. Then we attempt to measure the similarity of two videos through saliency matching merely based on the selected salient visual words to remove false positives. Our experiments show that a small codebook with saliency matching is quite competitive in video copy detection. With the incorporation of the proposed saliency matching, the precision can be improved by 30% on average compared with the state-of-the-art technique. Moreover, our proposed method is capable of detecting severe transformations, e.g. picture in picture and post production.
منابع مشابه
An Efficient Video Copy Detection Method Combining Vocabulary Tree and Inverted File
In this paper, we present an efficient content-based video copy detection method based on vocabulary tree and inverted files. The copy detection system exploits complementary local features and video sequence matching. Using two different local features, vocabulary trees and inverted files are built respectively to get keyframes matching result. Histogram-based and diagonal-based sequence match...
متن کاملCompressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملSalient regions detection in satellite images using the combination of MSER local features detector and saliency models
Nowadays, due to quality development of satellite images, automatic target detection on these images has been attracted many researchers' attention. Remote-sensing images follow various geospatial targets; these targets are generally man-made and have a distinctive structure from their surrounding areas. Different methods have been developed for automatic target detection. In most of these met...
متن کاملA Novel Approach to Background Subtraction Using Visual Saliency Map
Generally human vision system searches for salient regions and movements in video scenes to lessen the search space and effort. Using visual saliency map for modelling gives important information for understanding in many applications. In this paper we present a simple method with low computation load using visual saliency map for background subtraction in video stream. The proposed technique i...
متن کاملComparison of sequence matching techniques for video copy detection
Video copy detection is a complementary approach to watermarking. As opposed to watermarking, which relies on inserting a distinct pattern into the video stream, video copy detection techniques match content-based signatures to detect copies of video. Existing typical content-based copy detection schemes have relied on image matching. This paper proposes two new sequence-matching techniques for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013